Education: Theory & Practice
Modern Trends in the Science of Education
Резюме. The differentiation of sciences was replaced by their integration. Recently the old pedagogical disciplines have amalgamated in the comprehensive Science of Education. The most dynamic part of the science of education is the Science Education. The old special didactics were replaced by the ‘3P-Model (Pedagogy, Psychology, Philosophy); the latter emphasizes the necessity of using interdisciplinary and multidisciplinary methods when studying the processes in the social (and educational) systems. A great number of scholarly journals mark the contemporary development of Science Education. The present state-of-art in this area is outlined and discussed. If the Bulgarian ‘methodists’ (specialists in educational methods) have the ability to meet these challenges of the modern education is also discussed in some details.
Keywords: differentiation vs. integration, science of education, science education, 3P-model, scholarly journals, new pedagogical ideas and practices
References:
1. Lacatos, I. History of Science and Its Rational Reconstructions. Boston Studies Phil. Sci. 8, 174-182 (1972).
2. Toshev, B.V. Macrostability and Microinstabilities in the Scientific Process. BJSEP 2, 5-11 (2008) [In Bulgarian].
3. Bain, A. Education as a Science. D. Appleton & Co., New York, 1897.
4. Toshev, B.V. The Successful Teacher: Historical Review with Some Practical Recommendations. Chemistry 16, 473-481 (2007).
5. Dimitrov, D., B.V. Toshev. Before It’s Too Late. 1. The Reform in Higher Education. Strategies in Policy in Science & Education 9(2), 1-8 (2001) [In Bulgarian].
6. Toshev, B.V. Before It’s Too Late. 3. The Reform of Secondary Education. Chemistry 10, 353-362 (2001) [In Bulgarian].
7. Donnelly, J.F., E.W. Jenkins. Science Education: Policy,Professionalism and Change. Paul Chapman, London, 2001.
8. Aduliz-Bravo, A., M. Izquedro-Aymerich. Utilizing the ‘3P-Model’ to Characterize the Disciplines of Didactics of Science. Science & Education 14, 29-41 (2005).
9. Ravid, R. Practical Statistics for Educators. Univ. Press of America, Lanham, 2005.
10. Ravid, R., E. Oyer. Workbook to Accompany Practical Statistics for Educators. Univ. Press of America, Lanham, 2005.
11. Abell, S.K., N.C. Lederman (Eds.). Handbook of Research on Science Education. Lawrence Erlbaum Publishers, 2007, 1330 p.
12. Piaget, J. The Child’s Conception of the World. Routledge, London, 1929.
13. Piaget, J. The Child’s Conception of Physical Causality. Routledge, London, 1930.
14. Piaget, J. The Origin of Intelligence in Children. Intern. Univ. Press, New York, 1952.
15. Kuhn, T. The Structure of Scientific Revolutions. Univ. of Chicago Press, Chicago, 1970.
16. Vygotsky, L.S. Thought and Language. MIT Press, Cambridge, 1962.
17. Burns, R.J. Education and Social Change: A Proactive or Reactive Role. Int.-Rev. Educ. 48, 21-45 (2002).
18. Касабов, П.Г. Методика на училищната дисциплина. София, 1893.
19. Gerovitch, S. “New Soviet Man” Inside Machine: Human Engineering, Spacecraft Design, and the Construction of Communism. Osiris 22, 135-157 (2007).
20. Bauer, S.C. Should Achievement Tests Be Used to Judge School Quality? Education Policy Analysis Archives 8, No. 35, 2000.
21. Keeley, P. Science Curriculum Topic Study: Bridging the Gap between Standards and Practice. Corwin Press, Thousand Oaks, 2005.
22. Entwistle, N. (Ed.). Handbook of Educational Ideas and Practices. Routledge, London, 1990, 1140 pp.
23. Тошев, Б.В. Модерната наука за образованието и нейното място в българската класификация на научните области и специалности. Наука 18(2), 38-41 (2008).
24. Тоshev, B.V. Towards the European Higher Education Area. Chemistry 10, 147-152 (2001) [In Bulgarian].
25. Ангелова, В., З. Малчева, Л. Генкова. Методика на обучението по химия. Наука и изкуство, София, 1975 (2 изд. 1984; 3 изд. 1994; 4 изд. 1999).
26. Toshev, B.V. Chemical Didactic Papers Published in the Union of the Bulgarian Chemists Journal “Chemistry and Industry” from the Period of the Third Bulgarian Kingdom. Chemistry 7, 104-111 (1998) [In Bulgarian].
27. Огнянов, В., К. Илиев. Методика на химията (Върху основите на учебно-изследователския метод). София, 1940.
B.V. Toshev
Влезте в системата, за да прочетете пълната статияNew Approaches
Semiotic Approaches to Chemical Symbols
Резюме. Chemistry is a difficult subject. The students should transform the chemical information within three levels: macroscopic, microscopic and semiotic. The semiotic approach to the chemical symbols may be split into three more specific approaches, i.e. semantic, pragmatic and syntactic. This position with appropriate examples is described in the present paper. Some recommendations about improving the process of teaching/learning of chemistry are given.
Keywords: chemistry teaching and learning, semiotics, semiotic approaches in chemistry
References:
1. Галчева, П.Р., Л.Л. Антонова. Състав е структура на учебния химичен език. Унив. изд. „Епископ Константин Преславски”, Шумен, 2007.
2. Antonova, L. Semiotic Ideas and Teaching in Chemistry. Chemistry 7, 217-225 (1998) [In Bulgarian].
3. Добрев, Д.Н., Е.Р. Добрева. Справочник на семиотичните термини. Глаукс, Шумен, 1993.
4. Москов, М. Език и езикознание. Сиела, София, 2000.
5. Близнаков, Г., Л. Боянова, М. Радева, М. Петрова. Химия за 7. клас. Просвета, София, 2003.
6. Боянова, Л., Р. Манева, Е. Цифудин. Химия за 8. клас. Просвета, София, 2004.
7. Antonova, L., P. Galcheva, R. Vassileva. Use of the Semantic Approach to Introduction of the Chemical Equations. Chemistry 10, 309-316 (2001) [In Bulfarian].
L. Antonova, R. Vassileva-Tzankova
Teaching Chemical Experiment
Depsurvismeter, Multipurpose and Fast Tech Instrument for Density, Potential/Ph, Surface Tension and Viscosity for Molecular Interactions of Ureas and Biomelecules
Резюме. Depsurvismeter, a microscale device was used for density () measurements of aqueous melamine, urea and methylurea with 0.05 mol kg-1 aqueous urea at 293.15, 298.15 and 303.15 K. Mean ionic activity coefficients (γ±) of aqueous KCl, viscosities () and surface tension (γ) of 0.4 mg/100 mL aqueous solution of few biomolecules were also measured. The densities are close to those of Antaan Paar (AP, DMA model 60/601) and Magnetic Float Densimeter (MFD) by 1×10-2 kg m-3, the potential to those of Leeds and Northrop by 1×10-4 mill volt, surface tension and viscosities to those of survismeter by 0.1 mN m-1 and 1×10-5 N s m-2, respectively, with 95.5% confidence level in data. It works for aqueous, non-aqueous, electrolyte, non-electrolyte solutions and biofluids. The starch showed higher and casein the lower viscosities with stronger and weaker internal frictions, respectively.
Keywords: Magnetic float, Antaan Paar, depsurvismeter, interactions
References:
1. Singh, M. Determination of Densities of Amino Compounds for Molar Volumes in Aqueous Solutions with Magnetic Float Densimeter at Various Temperatures. Pak J. Sci. Ind. Res. 49(3), 160-169 (2006).
2. Pomero, C.M., M.S. Surface Tension of Aqueous Solutions of Alcohol and Polyols at 298.15 K. Phys. & Chem. Liquids 44, 61-65 (2006).
4. Hutchins, R.M. Great Books of the Western World. Vol. 12. Burton House Books, 1952.
5. Apelblat, A., E. Manzurola. Volumetric Properties of Water and Solutions of Sodium Chloride and Potassium Chloride at Temperatures from T = 277.15 K to 343.15 K at Molalities of (0.1, 0.5 and 1.0) mol kg-1. J. Chem. Therm. 31, 869-893 (1999).
6. Cabani S, G. Conti, L. Lepori, G. Leva. Volumetric properties of aqueous solutions of organic compounds. II. Chloride salts of cyclic amines. J. Phys. Chem. 76, 1343-1347 (1972).
7. Nelson, D.L., M.M. Cox. Lehninger Principles of Biochemistry (3rd Edition). Macmillan, New York, 2002.
8. Fernandez H., F. Vazquez, F.J. Millero. The Density and Composition of Hypersaline Waters of a Mexican Lagoon. Limnol. Oceanography 27, 315-321 (1982).
9. Friedman, H.L., C.V. Krishanan. Water. A Comprehensive Treatise (Chapter 1). Plenum Press, New York, 1973.
10. Hershey J.P., S. Sotolongo, F.J. Millero, Densities and Compressibilities of Aqueous Sodium Carbonate and Bicarbonate from 0 to 45oC. J. Sol. Chem. 12, 233-254 (1983).
11. Lee K., F.J. Millero. Thermodynamic Studies of the Carbonate System in Seawater. Deep-Sea Res. 42, 2035-2061 (1995).
12. Singh, M. Densities and Apparent Molar Volume for Glycine, DL-Alanine and - Alanine in Water and Water-Urea (1, 3, 5 and 7m) Solution at 288.15, 298.15 and 308.15 K. Ind. Chem. Soc. 82, 295-301 (2005).
13. Millero P.J. High Precision Float Dosimeter. Rev. Sci. Instr. 38, 1441-1444 (1967).
14. Millero P.J. Relative Viscosity and Apparent Molar Volume of N-methylpropionamide Solutions at Various Temperatures. J. Phys. Chem. 72, 3209-3214 (1968).
15. Millero P.J. The Apparent and Partial Molar Volume of Aqueous Sodium Chloride Solutions at Various Temperatures. J. Phys. Chem. 74, 356-62 (1970).
16. Millero, F.J., H.J. Knox, R.T. Emmetr. High-precision, Variable-pressure Magnetic Float Densimeter. J. Sol. Chem. 1, 173-186 (1972).
17. Millero F.J., W.L. Masterton. The volume Change for the Formation of Magnesium Sulfate Ion Pairs at Various Temperatures. J. Phys. Chem. 78, 1287-1294 (1974).
18. Millero F.J., A. Lo Surdo, C. Shin. The Apparent Molar Volumes and Adiabatic Compressibilities of Aqueous Amino Acids at 25oC. J. Phys. Chem. 82, 784-792 (1978).
19. Singh, M., Kumar A. Hydrophobic Interactions of N-methylureas in Aqueous Solutions Estimation from Density, Molar Volume, Viscosity and Surface tension. J. Sol. Chem. 35, 567-582 (2006).
20. Singh, M., Y.K. Sharma. Applications of Activation Energy and Transition State Theory for Interactions of Nucleos(t)ides and Furanose Puckering in Aqueous Medium from 288.15 to 298.15 K Phys. & Chem. Liquids 44, 1-14 (2006).
21. Singh, M., H. Chand, K.C. Gupta. Density and Viscosity of Bovine Serum Albumin, Egg Albumin and Lysozyme in Aqueous and RbI, CsI and DTAB Aqueous Solutions at 303.15K and Molecular Interactions. Chemistry & Biodiversity 2, 809-824 (2005).
22. Singh, M., Survismeter-type 1 and 2 for Surface Tension and Viscosity Measurements of Liquids for Academic, Research and Development studies. J. Biochem. Biophys. Methods, 67, 151-161 (2006).
23. Lide, D.L. Handbook of Chemistry and Physics. CRC Press, 2003-2004.
24. Singh, M. Studies of Intermolecular Force Coefficient (0imf) for Methyl Derivatives of Urea in Aqueous Solutions with Friccohesity, A New Physicochemical Function, from 293.15 to 303.15 K J. Ind. Chem. Soc. 82, 129-35 (2005).
25. Singh, M. Studies of Apparent Molar Volume and Viscosity of Mutual Citric Acid and Disodium Hydrogen Orthophosphate Aqueous Systems from 298.15 to 313.15 K. J. Chem. Sciences 118, 269-274 (2006).
26. Singh M. Survismeter 3-in-1 for Interfacial Tension (IFT), Surface Tension and Viscosity Measurements Simultaneously. Surf. Interface Anal. 40, 276-80 (2008).
27. Singh M. Visionmeter: A Novel Instrument for Teaching Chemical Sciences to the Visually Handicapped. Experim. Techn. 32, 53-57 (2008).
28. Singh, M. Structural Interactions of Globular Proteins-Bovine Serum Albumin (BSA), Egg Albumin (E Alb) and Lysozyme (lyso), in Aqueous Medium, Elucidated with Molar Volumes, Viscosities, Energy Functions and IR Spectra from 293.15 to 303.15 K. J. Appl. Polym. Sci. 103, 1420-1429 (2007).
29. Singh, M., S. Kumar. Activation Energy, Free energy, Enthalpy and Entropy Changes Associated with Viscometric Changes of Extremely to Moderately Dilute Aqueous Solutions of Polyvinylpyrrolidone at 288.15-313.15 K. J. Appl. Polym. Sci. 93, 47-55 (2004).
30. Singh M. A Simple Instrument for Measuring the Surface Tension and Viscosity of Liquids. J. Instr. Exp. Techn. 48, 270-71 (2005).
31. Singh, M. Survismeter, 2-in-1 for Viscosity and Surface Tension Measurement, An Excellent Invention for Industrial Proliferation of Surface Forces in Liquids. Surf. Rev. Lett. 14, 973-983 (2007).
32. Singh, M. Oscosurvismeter, A New Instrument for Osmotic Pressure, Conductance, Viscosity and Surface Tension Measurements of Liquid Solutions of Chemical Substances. Instr. Sci. Technol. 34, 669-76 (2006).
33. Levitt, B.P., J.A. Kitchener. Findlay’s Practical Chemistry (9th Editon). Longman, London, 1972.
34. Levine, I.N. Physical Chemistry (4th edition). Tata McGraw-Hill Publishing Co., New Delhi, 1995.
35. Singh, M. Upper Critical Solution Temperatures for Immiscible Solvent Systems with Halide Salts, Carboxylic Acids, Surfactants and Polynuclear Aromatic Compounds and Benzene Derivatives. J. Chem. Therm. 39, 240-246 (2007).
Man Singh
Problems
Balancing the Oxidation-Reduction Reactions Using Half-Reaction Method
Резюме. The sequence and rules for balancing of the oxidation-reduction reactions by the half-reaction method are listed and commented. The application of the method to balancing some typical oxidation-reduction processes is presented. The effect of media to the oxidation-reduction processes is taken into account in some of the problems. Reactions with organic substances are given as well.
Keywords: oxidation-reduction reactions, redox equation, half-reaction method
References:
1. Близнаков, Г., Л. Боянова, А. Соколова, П. Рибарска. Химия и опазване на околната среда за 10. клас. Анубис, София, 2004, с. 65-68.
2. Лазаров, Д., С. Караиванов, Е. Любенова, Л. Генкова, С. Бенева, М. Дичева. Химия за 10. клас на средното общообразователно училище. Просвета, София, 1994, с. 186-190.
3. Генов, Л., М. Манева-Петрова. Неорганична химия – I част. Наука и изкуство, София, 1993, с. 396-397 и с. 401-412.
4. Лазаров, Д. Неорганична химия. Унив. изд. „Св. Климент Охридски”, София, 2001, с. 209-211.
5. Дуков, И. Химични изчисления. Нови знания, София, 2000, с. 84-85.
6. Дафинова, Р., С. Манев, Е. Радков, В. Пелова. Лабораторни упражнения и задачи по неорганична химия. Унив. изд. „Св. Климент Охридски”, София, 2000, с. 51-57.
7. Кайдъмов, Б., Д. Тодоровски. Въпроси и задачи по обща и неорганична химия. Унив. изд. „Св. Климент Охридски”, София, 2000, с. 13-14.
8. Дякович, В., Ш. Динков, Л. Генкова. Сборник задачи и упражнения по химия (Част Втора). Народна просвета, София, 1980, с. 50-64.
9. Лунин, В.В, В.Г. Ненайденко, О.Н. Рыжова, Н.Е. Кузьменко. Химия XXI века в задачах Международных Менделеевских олимпиад. Изд. Моск. ун-та, Москва, 2006, с. 83, 182 и 285.
10. Гельфман, М.И., В.П. Люстратов. Химия для высшей школы. Санкт Петерсбург, 2001, с. 187-188.
11. Глинка, Н.П. Задачи и упражнения по общей химии. Химия, Ленинград, 1983.
12. Кудрявцев, А.А. Составление химических уравнений. Высшая школа, Москва, 1979.
13. Zumdahl, S. Introductory Chemistry: A Foundation (5th edition). Houghton-Muffin, 2003, p. 620-626.
14. Jones, L., P. Atkins. Chemistry: Molecules, Matter and Change (4th edition). W.H. Freeman and Co., New York, 2000, p. 626-629.
15. Шраймер, Д., П. Эткинс. Неорганическая химия. Мир, Москва, 2004, с. 292-295.
V. Jordanov, D. Nikolova
From the Research Laboratories
Iodine and Bromine Interaction with Trithia-9-crown-3 in Chloroform Solution
Резюме. A spectrophotometric study concerning the interaction between iodine and bromine as -acceptor with trithia-9-crown-3 (TT9C3) as n-donor is performed in chloroform solution at 25 oC. The results of iodine are indicative of the formation of 1:1 charge transfer complex through equilibrium reaction. The stability constant of the complex is obtained by fitting the absorbance vs. mole ratio data in MATLAB software. On the other hand, the results of bromine are indicative of the formation of 1:1 charge transfer complex through equilibrium step and then conversion of complex to TT9C3Br+Br- ion pair. The rate constant of the recent conversion is obtained by the slope of Ln(Ao/At) vs. time plot. The possible reasons for the formation of TT9C3Br+Br- and unformation of TT9C3I+I- are discussed. The IR spectra of TT9C3 and its iodine or bromine complexes are compared and the effects of complexation on absorption bands are discussed.
Keywords: spectrophotometry, TT9C3, iodine, bromine, chloroform, charge transfer
References:
1. Izatt, R.M., J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen, D. Sen. Thermodynamic and Kinetic Data for Cation-macrocycle Interaction. Chem. Rev. 85, 271-339 (1985).
2. Izatt, R.M., J.S. Pawlak, J.S. Bradshaw, R.L. Bruening. Thermodynamic and Kinetic Data for Macrocycle Interactions with Cations and Anions. Chem. Rev. 91, 1721-2085 (1991).
3. Izatt, R.M., J.S. Bradshaw, K. Pawlak, R.L. Bruening, B.J. Tarbet. Thermodynamic and Kinetic Data for Macrocycle Interaction with Neutral Molecules. Chem. Rev. 92, 1261-1354 (1992).
4. Nour El-Din, A.M. Molecular Complex Formation between Crown Ether and -Acceptors. Spectrichimica Acta A 42, 637-640 (1986).
5. Hirsch, W., J. Greenman, P. Pizer. Complexation of Aqueous Iodine by 18-crown-6. Canad. J. Chem. 71, 2171-2174 (1993).
6. Malini, R., V. Kirshnam. Charge Transfer Complexes of Crown Ethers with Neutral Organic -Acceptor, 2-dicyanoethylene 1,3-indane dione. Spectrochimica Acta A 40, 323-328 (1984).
7. Semnani, A., M. Shamsipur. Spectroscopic Study of Charge Transfer Complexes of Some Benzo Crown Ethers with -Acceptors DDQ and TCNE in Dichlormethane Solution. Spectrochimica Acta A 49, 411-415 (1993).
8. Semnani, A., M. Shamsipur. Spectrophotometric Study of the Complexation of Iodine with 1,7-diaza-15-crown-5 in Chloroform Solution. Incl. Phenom. 22, 99-105 (1995).
9. Hasani, M., M. Irandoust, M. Shamsipur. Spectroscopic and Conductometric Studies of Molecular Complex Formation between 2,4,6-trinitrophenol and diaza-18-crown-6, tetraaza-14-crown-4 and Cryptand C222 in 1,2-dichlorethane Solution. Spectrochimica Acta A 63, 377-382 (2006).
10. Shamsipur, M., N. Alizadeh. Spectrophotometric Study of Cobalt, Nickel, Copper, Zinc, Cadmium and Lead Complexes with Murexide in Dimethylsulphoxide Solution. Talanta 39, 1209-1212 (1992).
11. Habata, Y., S. Akabori, J.S. Bradshaw, R.M. Izatt. Synthesis of Armed and Double-armed Macrocycle Ligands by the Mannich Reaction: A Short Review. Ind. Eng. Chem. Res. 39, 3465-3470 (2000).
12. Cooper, S.R. Crown Thio Ether Chemistry. Acc. Chem. Res. 21, 141-146 (1988).
13. Setzer, W.N., Y. Tang, G.J. Grant, D.G. van Derveer. Synthesis and Complexation Studies of Mesocycle and Macrocycle Poliethers. 8. Synthesis and X-Ray Crystal Structure of Heavy-metal Complexes of 1,5,9,13-tetrathiacyclohexane. Inorg. Chem. 30, 3652-3656 (1991).
14. Savage, P.B., S.K. Holmgren, J.M. Desper, S.H. Gellman. Macrocycles Containing Sulfur and Phosphorus. Pure & Appl. Chem. 65, 461-468 (1993).
15. Alberto, R., W. Nef, A. Smith, T.A. Kaden, M. Neuburger, M. Zehnder, A. Frey, U. Abram, P.A. Schubiger. Silver(I) Complexes of the Derivatized Crown Thioether Ligands 3,6,9,12,15,18-Hexathianonadecanol and 3,6,9,13,16,19-Hexathiaicosanol. Determination of Stability Constants and the Crystal Structures of [Ag(19-aneS6-OH)][CF3SO3] and [Ag(20-aneS6-OH)][BF4]. Inorg. Chem. 35, 3420-3427 (1996).
16. Sellman, D., D. Haaussinger, F. Knock, M. Moll. Transition Metal Complexes with Sulfur Ligands. 1. A Reaction Cycle for Nickel Mediated Thioester Formation from Alkyl, CO, and Thiolate Groups Modeling the Acetyl-Coenzyme A Synthase Function of CO Dehydrogenase. J. Amer. Chem. Soc. 118, 5368-5374 (1996).
17. Yatsimirskii, B.Y., V.V. Pavlishchuk. Spectroscopic and Redox Behaviour of Some Copper(II)-thioether Complexes. J. Coord. Chem. 37, 341-348 (1996).
18. Comba, P., A. Fath, A. Kubner, B. Nuber. Preorganization of Tetrathiamacrocyclic Ligands: Implications from Computed and Experimentally Determined Structures. JCS. Dalton Trans. 1889-1898 (1997).
19. Saito, K., S. Murakami, A. Muromatsu, E. Sekido. Liquid-Liquid Extraction of Copper(I) by Cyclic Tetrathio Ethers. Anal. Chim. Acta 237, 245-249 (1990).
20. Shamsipur, M., M. Mashhadizadeh. Highly Efficient and Selective Membrane Transport of Silver(I) Using Hexathia-18-crown-6 as a Specific Ion Carrier. Separation & Purification Technol. 20, 147-153 (2000).
21. Nour, E.M., L.A. Shahada, S.S. Alkaabi. Spectrophotometric Investigation on the Interaction of Iodine with Polysulfur Cyclic Bases. Bull. Soc. Chim. Fr. 727-730 (1989).
22. Pouretedal, H.R., A. Semnani, M.H. Keshavarz, A.R. Firooz. Spectrophotometric Study of the Interaction between Aza-15-crown-5 and Some - Acceptors in Chloroform Solution. Turk. J. Chem. 29, 647-652 (2005).
23. Semnani, A., H.R. Pouretedal, M.H. Keshavarz. Spectrophotometric Study of the Interaction between Tetraethylammonium Halides and Aza-15-crown-5 with I2 and ICl in Acetonitrile Solution. Bull. Korean Chem. Soc. 27, 286-290 (2006).
24. Pouretedal, H.R., A. Semnani, M.H. Keshavarz, A.R. Firooz. Iodine, Iodinemonochloride and Bromine Interaction with 1,3,5-Triazine in Chloroform Solution. Heterocyclic Comm. 12, 291-294 (2006).
25. Semnani, A., H.R. Pouretedal, M.H. Keshavarz, A.R. Firooz. Spectrophotometric Study of the Interaction of Iodinemonochloride with A15C5 in Chloroform Solution. Polish J. Chem. 80, 2055-2058 (2006).
26. Foster, R. Organic Charge Transfer Complexes. Academic Press, London, 1969.
27. Mulliken, R.S., W.B. Person. Molecular Complexes. Wiley, New York, 1969.
28. Beck, M.T., I. Nagypal. Chemistry and Complex Equilibria. Wiley, New York, 1990.
29. Job, P. Reserches sur la formation de complexes mineraux en solution et sur leur stabilité. Am. Chim. Phys. 9, 113-203 (1928).
30. Skoog, D.A., D.M. West, F.J. Holler. Fundamentals of Analytical Chemistry. Saunder College Publishing, 1988.
31. Gans, P. Data Fitting in the Chemical Sciences by the Method of Least Squares. Wiley, New York, 1992.
32. Gruhn, M., J. Guckenheimer, B. Land, R.M. Harris-Warrick. Dopamine Modulation of Two Delayed Rectifier Potassium Currents in a small neural Network. J. Neurophysiology 94, 2888-2900 (2005).
33. Christian, G.D., J.E. O’Reilly. Instrumental Analysis. Alyn & Bakon, 1986.
34. Hehucy, J.E. Inorganic Chemistry. Happer & Row, New York, 1987.
35. Labbe, P., R. Le Goaller, H. Handel, G. Pierre, J.-L. Pierre. Etude electrochimique de l’iode et du brome en presence de cryptands. Electrochim. Acta 27, 257-261 (1982).
36. Pedersen, C.J. Crystalline Salt Complexes of Macrocyclic Polyethers. J. Amer. Chem. Soc. 92, 386-391 (1970).
37. Pavia, D.L., G.M. Lampman, E. Kriz. Introduction to Spectroscopy. Saunder Golden Series, 1996.
38. Gibson, R.E., O.H. Loeffer. The Effect of Pressure, Temperature and Chemical Composition on the Absorption of Light by Mixtures of Aromatic Amines and Nitro Compounds. J. Amer. Chem. Soc. 62, 1324-1334 (1940).
39. Semnani, A., H.R. Pouretedal, B. Nazari, A.R. Firooz. A Spectrophotometric Study of the Complexation of Bromine with Some Crown Ethers in Chloroform Solution. Scientia Iranica 10, 317-321 (2003).
40. Semnani, A., A.R. Firooz, H.R. Pouretedal, B. Nazari. Spectrophotometric Study of the Interaction of Some Benzo, Benzyl and Phenylcrown Ethers with -Acceptors DDQ in Chloroform Solution. Iran. J. Chem. & Chem. Engng. 23, 57-61 (2004).
A. Semnani, A.R. Firooz, H.R. Pouretedal, M.H. Keshavarz
New Information Media
Alternatives in Implementation of E-Course in Chemistry and Environmental Protection, Section „Transition Metals“ – 10th Grade
Резюме. The present article sets a few possibilities of implementing of e-courses, completed on request of the Ministry of Education and Science, in the process of teaching Chemistry and Environmental Protection. Our anticipations are that the integration of Chemistry and Environmental Protection along with the Information and Communication Technologies (ICT) supports the provision of a qualitative access to education. Various practices have been accomplished to include on-line learning. They have been applied when studying the section on “Transitive Metals” – 10th grade in Chemistry and Environmental Protection in “Yordan Radichkov” High Language School, including students from 11th grade. Our practice shows increased interest to the learning process in class. Unconventional activities are also included and these show particular competences to use where appropriate the already provided Internet-based and other information. These unconventional activities may develop skills not only for individual learning but also skills to put knowledge into practice in order to solve problems in new situations. The already made inquiries with parents and with students as well allow us to conclude that the combination of the traditional student textbook with its e-course version is the preferable from the inquired people alternative. However, they both emphasize on the teacher’s leading role in the process of education.
Keywords: chemistry education, e-learning, e-textbooks
References:
1. Виткова, Е. А. Смикаров, О. Кузов. Национална програма за създаване на виртуално образователно пространство в България – основни резултати и предстоящи задачи. В.: Гълъбов, Б., В. Павлова, В. Ковачев (ред.). Втора национална конференция по електронно обучение във висшето образование, Унив. изд. „Св. Климент Охридски“, София, 2006, с. 5-12.
2. Смикаров, А. Създаване на национална мрежа от виртуални библиотеки за електронно обучение. В.: Гълъбов, Б., В. Павлова, В. Ковачев (ред.). Втора национална конференция по електронно обучение във висшето образование, Унив. изд. „Св. Климент Охридски“, София, 2006, с. 26-27.
3. Алексеев, А., Г. Косекова. Методология, методика и технология на WEB-базирана магистърска програма по медицинска биохимия (дистанционна форма на обучение). Централна медицинска библиотека, София, 2007.
4. Тотков, Г., Д. Денев, Р. Донева. BEST: Български образователен портал за е-проекти (с демонстрации). В.: Гълъбов, Б., В. Павлова, В. Ковачев (ред.). Втора национална конференция по електронно обучение във висшето образование, Унив. изд. „Св. Климент Охридски“, София, 2006, с. 69-73.
5. Димитров С., К. Капустин, С. Цаковски. Изграждане на отворена обучаваща система в интернет. В. : Боянова, Л., И. Иванов, С. Манев (съст.) 40-та Национална конференция на учителите по химия. Унив. изд.“Св. Климент Охридски”, София, 2005, с. 145-148.
6. Косекова, Г. Иновационни образователни технологии в медицинското образование Проектиране на web-базирано обучение по биохимия. Централна медицинска библиотека, София, 2005.
7. Димитрова, В. Експериментална система ISES в електронното обучение по физика. В.: Гълъбов, Б., В. Павлова, В. Ковачев (ред.). Втора национална конференция по електронно обучение във висшето образование, Унив. изд. „Св. Климент Охридски“, София, 2006, с. 36-39.
8. Косекова, Г. Web-базирано обучение по биохимия – от ентусиазма до виртуалния модел. Централна медицинска библиотека, София, 2005.
9. Nancheva, N., D. Aleksandrova. Simulations as a Tool for Visualization of the Phenomenon Magnetic Hysteresis. В.: Гълъбов, Б., В. Павлова, В. Ковачев (ред.). Втора национална конференция по електронно обучение във висшето образование, Унив. изд. „Св. Климент Охридски“, София, 2006, с. 61-64.
10. Илчева, Ю. Електронните учебници в обучението и възможности за приложение по физика, Годишник на МГУ “Св. Иван Рилски”. 49(ІV), 87-92 (2006).
11. Близнаков Г., Л. Боянова, А. Соколова, П. Рибарска. Химия и опазване на околната среда 9 клас – задължителна подготовка. ИК Анубис, София, 2002.
12. Лазаров Д. Семейството на желязото. СД “Едит-ком”, София, 1992.
13. Боянова Л., М. Бенчева. WEB-базираните технологии в обучението по химия и опазване на околната среда. Химия, 14, 265-272 (2005).
L. Boyanova, I. Filipova